# Synthesis of Polyfluorinated and Polychlorinated Hydrocarbons

Yong Guan Feb. 13, 2009

Nicoletti, M.; O'Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482.
Hunter, L.; O'Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2006, 128, 16422.
Hunter, L.; Slawin, A. M. Z.; Kirsch, P.; O'Hagan, D. Angew. Chem., Int. Ed. 2007, 46, 7887.
Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.
Yoshimitsu, T., Fukumoto, N., Tanaka, T. J. Org. Chem. 2009, 74, 696.
Nilewski, C., Geisser, R. W.; Erick M. Carreira. Nature 2009, 457, 573.

# Outline

- Synthesis of Polyfluorinated Hydrocarbons
- Synthesis of Polychlorinated Hydrocarbons

# Outline

- Synthesis of Polyfluorinated Hydrocarbons
- Synthesis of Polychlorinated Hydrocarbons





**a** R = C<sub>5</sub>H<sub>11</sub>, R' = CH<sub>3</sub>, **b** R = C<sub>7</sub>H<sub>15</sub>, R' = C<sub>5</sub>H<sub>10</sub>Ph. (i) *m*CPBA in DCM, 0 °C, 2 h. (ii) HF•pyridine in DCM, 10 °C, 4 h. (iii,iv) SOCl<sub>2</sub>, py. in DCM, 0 °C, 45 min then NalO<sub>4</sub>/ RuCl<sub>3</sub> in CH<sub>3</sub>CN/H<sub>2</sub>O, 0 °C 1 h. (v) TBAF in acetone, 0 °C 2 h. (vi) Et<sub>2</sub>O/H<sub>2</sub>SO<sub>4</sub>. (vii) Tf<sub>2</sub>O, pyr in DCM, -40 °C, 1 h. (viii) TBAF in MeCN, 0 °C, 30 min.



**a** R = C<sub>5</sub>H<sub>11</sub>, R' = CH<sub>3</sub>, **b** R = C<sub>7</sub>H<sub>15</sub>, R' = C<sub>5</sub>H<sub>10</sub>Ph. (i) *m*CPBA in DCM, 0 °C, 2 h. (ii) HF•pyridine in DCM, 10 °C, 4 h. (iii,iv) SOCl<sub>2</sub>, py. in DCM, 0 °C, 45 min then NalO<sub>4</sub>/ RuCl<sub>3</sub> in CH<sub>3</sub>CN/H<sub>2</sub>O, 0 °C 1 h. (v) TBAF in acetone, 0 °C 2 h. (vi) Et<sub>2</sub>O/H<sub>2</sub>SO<sub>4</sub>. (vii) Tf<sub>2</sub>O, pyr in DCM, -40 °C, 1 h. (viii) TBAF in MeCN, 0 °C, 30 min.



**a** R = C<sub>5</sub>H<sub>11</sub>, R' = CH<sub>3</sub>, **b** R = C<sub>7</sub>H<sub>15</sub>, R' = C<sub>5</sub>H<sub>10</sub>Ph. (i) *m*CPBA in DCM, 0 °C, 2 h. (ii) HF•pyridine in DCM, 10 °C, 4 h. (iii,iv) SOCl<sub>2</sub>, py. in DCM, 0 °C, 45 min then NalO<sub>4</sub>/RuCl<sub>3</sub> in CH<sub>3</sub>CN/H<sub>2</sub>O, 0 °C 1 h. (v) TBAF in acetone, 0 °C 2 h. (vi) Et<sub>2</sub>O/H<sub>2</sub>SO<sub>4</sub>. (vii) Tf<sub>2</sub>O, pyr in DCM, -40 °C, 1 h. (viii) TBAF in MeCN, 0 °C, 30 min.



Table 1. <sup>19</sup>F{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) Data for Compounds 1a-2b

|    | <sup>19</sup> F chemic | <sup>19</sup> F— <sup>19</sup> F coupling<br>constants (Hz) |      |                    |                  |                     |
|----|------------------------|-------------------------------------------------------------|------|--------------------|------------------|---------------------|
|    | Fα                     | $F_{\beta}$                                                 | Fγ   | $J_{\alpha-\beta}$ | $J_{eta-\gamma}$ | $J_{\alpha-\gamma}$ |
| la | -189                   | -199                                                        | -207 | 12.9               | 11.2             | _                   |
| 2a | -185                   | -201                                                        | -213 | 14.4               | 9.3              | 3.4                 |
| 1b | -197                   | 197                                                         | -207 | 12.3               | 12.3             |                     |
| 2b | -194                   | -200                                                        | -212 | 14.9               | 9.2              |                     |

Nicoletti, M.; O'Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482.



X-ray structure of 8a' confirming the relative stereochemistry.

vicinal C-F bonds preferring to align gauche to each other





(a)  $Et_3N \cdot 3HF$ ,  $Na_2SO_4$ , 70 °C; (b) BnBr, NaH, DMF, 40 °C; (c) Grubbs second generation catalyst, DCM,  $\Delta$ ; (d) KMnO<sub>4</sub>, MgSO<sub>4</sub>, EtOH, H<sub>2</sub>O, -10 °C; (e) SOCl<sub>2</sub>, pyridine, DCM, 0 °C; (f) NalO<sub>4</sub>, RuCl<sub>3</sub>, MeCN, H<sub>2</sub>O, 0 °C; (g) TBAF, MeCN, rt; (h) H<sub>2</sub>SO<sub>4</sub>, H<sub>2</sub>O, THF, rt.



(a) Tf<sub>2</sub>O, pyridine, DCM, -40 °C; (b) TBAF, MeCN, 0 °C; (c) Deoxo-Fluor, 70 °C; (d) H<sub>2</sub>, Pd/C, MeOH, rt; (e) TsCl, 2,4,6-collidine, 50 °C.



C2 symmetry;

Dihedral angles of 66.7° (F9-C-C-F10) and 59.7° (F10-C-C-F10') between vicinal fluorines;

The aryl and fluoroalkyl groups pack in separate domains;

Intermolecular interactions include a hydrogen bond (2.52 Å) from the fluorine atom of C10 (and C10') to the hydrogen atom at C9 (and C9') of an adjacent molecule.

#### $\alpha,\beta,\gamma,\delta$ -tetrafluoroalkane



## $\alpha, \beta, \gamma, \delta$ -tetrafluoroalkane



a) Grubbs 2nd-generation catalyst, DCM,  $\Delta$ ; b) KMnO<sub>4</sub>, MgSO<sub>4</sub>, EtOH, DCM, H<sub>2</sub>O, 0 °C; c) SOCl<sub>2</sub>, pyridine, DCM, rt; d) NalO<sub>4</sub>, RuCl<sub>3</sub>, MeCN, H<sub>2</sub>O, rt; e) Bu<sub>4</sub>NF, MeCN, rt; f) H<sub>2</sub>SO<sub>4</sub>, H<sub>2</sub>O, THF, RT; g) H<sub>2</sub>, Pd/C, MeOH, rt; h) TsCl, collidine, 50 °C; i) Deoxo-Fluor, DCM,  $\Delta$ .

## $\alpha,\beta,\gamma,\delta$ -tetrafluoroalkane



a) Grubbs 2nd-generation catalyst, DCM,  $\Delta$ ; b) KMnO<sub>4</sub>, MgSO<sub>4</sub>, EtOH, DCM, H<sub>2</sub>O, 0 °C; c) SOCl<sub>2</sub>, pyridine, DCM, rt; d) NalO<sub>4</sub>, RuCl<sub>3</sub>, MeCN, H<sub>2</sub>O, rt; e) Bu<sub>4</sub>NF, MeCN, rt; f) H<sub>2</sub>SO<sub>4</sub>, H<sub>2</sub>O, THF, RT; g) H<sub>2</sub>, Pd/C, MeOH, rt; h) TsCl, collidine, 50 °C; i) Deoxo-Fluor, DCM,  $\Delta$ .

## $\alpha, \beta, \gamma, \delta$ -tetrafluoroalkane



Left: The simplified model system 6. Middle: Calculated linear conformations and right: either minimum (6a, 6c) or next higher energy conformation (6b). C gray, F green, H white; red arrows indicate  $g^+g^-$ -F–F interactions. Relative energies are in kcal mol<sup>-1</sup>.

- 1)  $g^+g^--F$  interaction costs about 3.4 kcal mol<sup>-1</sup> in steric strain
- 2) 1,3-F···CH3 interaction costs 4.04 kcal mol<sup>-1</sup>
- 3) vicinal fluorine gauche effect (ca. 0.8 kcal mol<sup>-1</sup>) has only a secondary influence

# Outline

- Synthesis of Polyfluorinated Hydrocarbons
- Synthesis of Polychlorinated Hydrocarbons



Unnamed chlorosulfolipids isolated from Adriatic mussels (1-3) and from freshwater algae (4) and algae-derived protein kinase inhibitor malhamensilipin A (5)

Gerwick, W. H., *et al. J. Nat. Prod.* **1994**, *57*, 524 Ciminiello, P., *et al. J. Org. Chem.* **2001**, *66*, 578 Ciminiello, P., *et al. J. Am. Chem. Soc.* **2002**, *124*, 13114.



Probable conformational preference of chlorosulfolipid **1**. g = gauche, a = anti.





Markó-Maguire Reagents





Mioskowski Reagents





Comparison of the Markó-Maguire and Mioskowski Reagents for Diastereoselective Vicinal Dichlorination of Allylic Alcohol Derivatives (TBS = *tert*-Butyldimethylsilyl, Piv = Pivaloate)



Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.



Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.



Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.



Diastereoselective Synthesis of a Stereotetrad Relevant to Chlorosulfolipid 1

Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.



Synthesis of Pyran **16** to Confirm the Relative Stereochemistry of Dichlorination

Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.









All reactions were carried out using NCS (3 equiv) and PPh<sub>3</sub> (3 equiv) in toluene



Rationale for Configurational Retention at the C3 Position



All reactions were carried out using NCS (3 equiv) and PPh<sub>3</sub> (3 equiv) in toluene at 90 °C





<sup>a</sup> The reaction was carried out using NCS (3 equiv) and  $Ph_2PCI$  (2 equiv) in  $CH_2CI_2$  at rt.

<sup>b</sup> Racemic substrate was used.

<sup>c</sup> The reaction was carried out using NCS (3 equiv) and Ph2PCI (3 equiv) in CH<sub>2</sub>Cl<sub>2</sub> at rt.



Tetrachlorination of Bisepoxides **4n-q** with NCS/Ph<sub>3</sub>P Yoshimitsu, T., Fukumoto, N., Tanaka, T. *J. Org. Chem.* **2009**, *74*, 696.





(a)  $(H_5C_2)_4NCI_3$ ,  $CH_2CI_2$ , 0 °C, 45 min, 68%; (b) DIBAL (2.3 equiv.),  $H_5C_2H_5C_6$ , 0 °C, 10 min, 72%; (c) imidazole (1.5 equiv.), *t*-Bu(H\_3C)\_2SiCl (1.2 equiv.), CH\_2CI\_2, 0 °C to room temperature (RT, 20 °C), 30 min, 87%; (d) OsO<sub>4</sub> (5 mol%),NMO(1.1 equiv.), acetone/H<sub>2</sub>O, RT, 19 h, 68%; (e) DABCO (3.0 equiv.), (F<sub>3</sub>CSO<sub>2</sub>)<sub>2</sub>O (1.0 equiv.), -78 °C, 10 min, then diol, -78 °C to RT, 15 h, 75% (96% based on recovered starting material); (f) (1)-CSA (0.1 equiv.), CH<sub>3</sub>OH, RT, 3 h, 98%; (g) (COCI)<sub>2</sub> (1.3 equiv.), (H<sub>3</sub>C)<sub>2</sub>SO (2.5 equiv.), CH<sub>2</sub>CI<sub>2</sub>, -78 °C, 10 min, then **10** (1.0 equiv.), -78 °C, 30 min, then (H<sub>5</sub>C<sub>2</sub>)<sub>3</sub>N (5.4 equiv.), -78 °C to RT, 1h; (h) **11** (1.05 equiv.), n-BuLi (1.05 equiv.), THF, -78 °C, then RT, 10 min, followed by aldehyde (1.0 equiv.) at -78 °C, 5 min, then RT, 30 min, 62% over two steps; (i) (H<sub>3</sub>C)<sub>3</sub>SiCl (2.0 equiv.), CH<sub>2</sub>CI<sub>2</sub>, H<sub>3</sub>CCO<sub>2</sub>C<sub>2</sub>H<sub>5</sub>, 11.5 h, 39% **15**, 4%**16**, 10% mixture of S<sub>N</sub>2' products (31% starting material recovered);



(j)  $(H_5C_2)_4NCl_3$  (3.0 equiv.),  $CH_2Cl_2$ , 0 °C, 10 min, 51%; (k) (+)-CSA (10 mol%),  $CH_3OH$ , 12 h, 80%; (l) DAIB (1.1 equiv.), TEMPO (0.1 equiv.),  $CH_2Cl_2$ , RT, 16.5 h; (m)  $CrCl_2$  (6.9 equiv.),  $CHCl_3$  (2.6 equiv.), THF, 65 °C, 49% over two steps; (n)  $SO_3$ -pyridine (6.0 equiv.), THF, 30 min, 27% (66% starting material recovered).



(a) *m*-CPBA,  $CH_2CI_2$ , 0 °C to RT, d.r.=1:1, 95% overall; (b) 4Å molecular sieves, NMO (1.1 equiv.), TPAP (5 mol%),  $CH_2CI_2$ , 6h; **11** (1.6 equiv.), n-BuLi (1.6 equiv.), THF, -78 °C, RT, 10 min; then addition of the aldehyde solution to the phosphonium ylide at -78 °C, 1 h, then RT, 1.5 h, 34% (56% based on recovered starting material); (c)  $(H_3C)_3SiCI$  (2.0 equiv.),  $CH_2CI_2$ ,  $H_3CCO_2C_2H_5$ , 9 h, 43% (73% based on recovered starting material); (d)  $(H_5C_2)_4NCI_3$  (3.0 equiv.),  $CH_2CI_2$ , -78 °C, 2 h, d.r.=10:1, 93% overall; (e) (+)-CSA (10 mol%),  $CH_3OH$ , 12 h, 98%;



(e) (+)-CSA (10 mol%), CH<sub>3</sub>OH, 12 h, 98%; (f) DAIB (1.3 equiv.), TEMPO (0.2 equiv.), CH<sub>2</sub>Cl<sub>2</sub>, RT, 16.5 h; (g)  $CrCl_2$  (6.8 equiv.), CHCl<sub>3</sub> (2.5 equiv.), THF, 65 uC, 47% over two steps; (h) SO<sub>3</sub>-pyridine (3.0 equiv.), THF, 20 min, 99%.

# Conclusions

- Polyflurinated and polychlorinated compounds have newly gained synthetic interests.
- Enantio- and stereoselective methods are needed.

